Modeling of Radiative Heat Transfer in 2D Complex Heat Recuperator of Biomass Pyrolysis Furnace: A Study of Baffles Shadow and Soot Volume Fraction Effects
نویسندگان
چکیده
The radiative heat transfer problem is investigated numerically for 2D complex geometry biomass pyrolysis reactor composed of two pyrolysis chambers and a heat recuperator. The fumes are a mixture of carbon dioxide and water vapor charged with absorbing and scattering particles and soot. In order to increase gases residence time and heat transfer, the heat recuperator is provided with many inclined, vertical, horizontal, diffuse and grey baffles of finite thickness and has a complex geometry. The Finite Volume Method (FVM) is applied to study radiative heat transfer. The blocked-off region procedure is used to treat the geometrical irregularities. Eight cases are considered in order to demonstrate the effect of adding baffles on the walls of the heat recuperator and on the walls of the pyrolysis rooms then choose the best case giving the maximum heat flux transferred to the biomass in the pyrolysis chambers. Ray effect due to the presence of baffles is studied and demonstrated to have a crucial effect on radiative heat flux on the walls of the pyrolysis rooms. Shadow effect caused by the presence of the baffles is also studied. The non grey radiative heat transfer is studied for the real existent configuration. The Weighted Sum of The Grey Gases (WSGG) Model of Kim and Song is used as non grey model. The effect of soot volumetric fraction on the non grey radiative heat flux is investigated and discussed. Keywords—Baffles, Blocked-off region procedure, FVM, Heat recuperation, Radiative heat transfer, Shadow effect.
منابع مشابه
Analysis of heat transfer in the pyrolysis of differently shaped biomass particles subjected to different boundary conditions: integral transform methods
The conversion and utilization of biomass as an alternative source of energy have been subjects of interest in various countries, but technical barriers to the technology and design of conversion plants have considerably impeded the development and use of alternative power sources. Theoretical studies on the conversion process enhance our understanding of the thermochemical conversion of solid ...
متن کاملANALYSIS OF COMBINED CONDUCTION AND RADIATION HEAT TRANSFER IN A RECTANGULAR FURNACE INCLUDING TWO FLAMES
Abstract: The present study deals the theoretical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and scattering gray medium within two-dimensional square furnace including two flames. The gray radiative medium is bounded by isothermal walls which are considered to be opaque, diffuse and gray. The well known discrete ordinate method (DOM...
متن کاملNonlinear Analysis of Integrated Kinetics and Heat Transfer Models of Slow Pyrolysis of Biomass Particles using Differential Transformation Method
The inherent nonlinearities in the kinetics and heat transfer models of biomass pyrolysis have led to the applications of various numerical methods in solving the nonlinear problems. However, in order to have physical insights into the phenomena and to show the direct relationships between the parameters of the models, analytical solutions are required. In this work, approximate analytical solu...
متن کاملRadiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کاملNumerical study of influence of type of nanoparticles and volume fraction on turbulent heat transfer coefficient and pressure loss inter a tube
The conventional liquids have some limitations regarding the thermal properties. The nanoparticles addition is one of the techniques which can modify them. In this research, heat transfer coefficient (h) and pressure loss (Δp) of various nanofluids containing Al2O3, SiO2 and MgO nanoparticles dispersed in water in an annular tube with constant wall temperature were numerically considered. Accor...
متن کامل